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The Quadrature Discretization Method (QDM) is employed in the solution of several one-
dimensional Schrödinger equations that have received considerable attention in the literature.
The QDM is based on the discretization of the wave function on a grid of points that
coincide with the points of a quadrature. The quadrature is based on a set of non-classical
polynomials orthogonal with respect to a weight function. For a certain class of problems
with potentials of the form that occur in supersymmetric quantum mechanics, the ground
state wavefunction is known. In the present paper, the weight functions that are used
are related to the ground state wavefunctions if known, or some approximate form. The
eigenvalues and eigenfunctions of four different potential functions discussed extensively in
the literature are calculated and the results are compared with published values.

1. Introduction

The Quadrature Discretization Method (QDM) was originally developed for the
solution of kinetic theory problems [7,47,49], the Fokker–Planck equation [38,51],
and has been recently applied to the Schrödinger equation [48,50]. The details of the
methodology were previously presented by Shizgal [47], Shizgal and Blackmore [49],
Blackmore and Shizgal [7] and Shizgal and Chen [50]. The latter reference also dis-
cussed the relationship of the Fokker–Planck equation and the Schrödinger equation. It
has also been recently applied to fluid dynamics problems [39,62,63]. The method in-
volves the creation of polynomial basis sets [10,13,28,43] for each problem considered.
The usual methods for basis set construction can lead to algorithms that are numeri-
cally unstable [11]. However, Gautschi [29] has developed a stable accurate method
for the generation of orthonormal basis sets for arbitrary weight function referred to
as the Stieltjes procedure.
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There have been numerous papers on the solution of the elementary one-
dimensional Schrödinger equation,[

− d2

dy2 + V (y)

]
ψ(y) = Eψ(y), (1)

with different methods and several choices for the potential function V (y) [2–6,8,9,
12,14–27,30–37,40–42,44–46,52,53,55–61,64]. Some of the potentials studied include
the Non-Polynomial Oscillator (NPO) potential of the form

V (y) = y2 +
λy2

1 + gy2 . (2)

Mitra [41] employed Hermite polynomials as basis functions and reduced the
Schrödinger equation to matrix form. Mitra obtained the eigenvalues and eigenfunc-
tions by numerical diagonalization and reported numerical results for the first three
eigenvalues. Kaushal [36] described a perturbative approach and compared with the
previous numerical results. Bessis and Bessis [6] demonstrated that the matrix el-
ements of the potential with Hermite basis functions can be done analytically and
the numerical integrations by Mitra are unnecessary. Flessas [27] showed that for
particular relationships between λ and g there are some exact results for the eigen-
values of this potential. For example, if λ = −4g − 2g2, then E1 = 1 − 2g and, if
λ = −7g2− 6g± g

√
25g2 − 12g + 4, then E2 = (9g+ λ)/g. These results are useful

for benchmarking different numerical methods. Hautot [33] reconsidered the calcula-
tion of the matrix elements of the Hamiltonian for this potential in the Hermite basis
set. Lai and Lin [37] reported additional exact solutions not discovered by Flessas, and
also introduced a Pade approximant analysis. Fack and Van den Berghe [18] employed
several different finite difference schemes to solve for the eigenvalues and eigenfunc-
tions for this problem. They employed a fine grid of points and diagonalized matrices
of dimensions 200×200. They compared their results with available numerical results
of previous workers, as well as for models with known exact results. Varshni [55]
and Witwit [57,59] extended the earlier work to a three-dimensional version of this
potential. Scherrer et al. [46] employed the continued fraction developed by Risken
for the solution of the Fokker–Planck equation.

We have also considered the potential given by

V (y) = y6 − 3y2, (3)

considered by Sinha et al. [53]. This potential belongs to the class of potentials that
arise in supersymmetric quantum mechanics [12,14] and are the same class that results
in the transformation of the Fokker–Planck equation to the Schrödinger equation [16,
17,42,44,45,50]. These authors consider a comparison of the SWKB results [12,14]
and an exact calculation of the eigenvalues from a direct integration of the Schrödinger
equation.
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Kaluza [35] considered the anharmonic sextic oscillator defined by the potential

V (y) =
1
2
y2 + 2y4 +

1
2
y6. (4)

Kaluza employed an analytical Lanczos procedure to generate the tridiagonal matrix
representative of the Hamiltonian for this potential. Since the algorithm is analogous
to a Schmidt orthogonalization procedure, it suffers from considerable roundoff error.
This problem was aleviated by using multiple precision arithmetic. Braun et al. [8]
employed a finite difference approach to study the same potential and was able to
reproduce the numerical results of Kaluza and extend the precision of many of the
higher eigenvalues.

A fourth potential that we consider in this paper is of the form

V (y) = y2 + εy4, (5)

which has been studied by several workers. Banerjee et al. [5] and Banerjee [4]
employed a non-perturbative method with the product of scaled Gaussian and a poly-
nomial as weight function to calculate the eigenvalues for this potential for various
values of ε. Fernandez et al. [22] and Arteca et al. [2] applied a variational method
to obtain the eigenvalues and compared with Banerjee’s results. Fernandez and Cas-
tro [23] obtained the eigenvalues of this potential by solving the corresponding Riccati
equation with Pade approximants. Recently, Fernandez and Tipping [26] improved the
solution of the Riccati equation for this potential with a separation of the eigenfunc-
tions into odd and even parity. Fack and Van den Berghe employed a finite-difference
method to solve this problem. Witwit [60,61] extended the work to two and three-
dimensional problems. The QDM was recently applied with considerable success to the
two-dimensional Schrödinger equation with the Henon–Heles potential function [50].

A great many papers have appeared on the calculation of the spectra of gen-
eralized anharmonic oscillators and their discussion here is beyond the scope of the
present paper. Ari and Demiralp [1] and Taseli and Demiralp [54] employed character-
istic function and Wronskian approaches to determine the spectra of such generalized
anharmonic oscillators. These authors propose alternate methods that do not involve
the direct calculation of the matrix elements of the Hamiltonian in the Schrödinger
equation. The QDM also does not require the direct integration of matrix elements.
The discrete representation of the Hamiltonian involves only function evaluations of
the potential. A brief summary of the QDM is presented in section 2. Further details
were presented by Shizgal and Chen [50,51]. The applications to the four potential
functions given by equations (2)–(5) are presented and discussed in section 3. A sum-
mary of the results is provided in section 4.

2. The solution of the Schrödinger equation with the QDM

The basic methodology of the QDM has been discussed by Shizgal and Chen in
a previous paper [50] and it is also presented in the preceeding paper [38]. The matrix
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representative of the Hamiltonian in the Schrödinger equation in the basis set {Sn(y)}
is given by

Hnm = −
∫
Sn(y)S′′m(y) dy +

∫
Sn(y)V (y)Sm(y) dy. (6)

With an integration by parts in the first integral, we have that

Hnm =

∫
S′n(y)S′m(y) dy + Vnm, (7)

where Vnm =
∫
Sn(y)V (y)Sm(y) dy. The eigenvalues and the eigenfunctions can be

calculated with the numerical diagonalization of equation (7). The disadvantage of this
representation is that the matrix elements are generally evaluated numerically except for
certain special models. The appropriateness of the choice of basis set can be acertained
to some extent from the structure of Hnm. If, for example, Hnm is tridiagonal as in
the work of Kaluza [35], the convergence of the eigenvalues is expected to be rapid.

We now consider the transformation to the polynomial basis set {Rn(y)} given
by

Sn(y) =
√
w(y)Rn(y), (8)

where we choose the weight function as expressible in the form w(y) = exp(−
∫
W (y′)

dy′). This form of weight function is related to the steady state distribution function
given by a Fokker–Planck equation [38]. Equation (10) can be rewritten in terms of
Rn(y) as given by

Hnm =

∫
w

[
R′m +

w′

2w
Rm

][
R′n +

w′

2w
Rn

]
dy + Vnm. (9)

If one of the cross terms in the integrand above is integrated by parts, one gets that

Hnm =

∫
wR′nR

′
m dy +

[
Vnm − Ṽnm

]
, (10)

where

Ṽ (y) =
1
4
W 2(y)− 1

2
W ′(y). (11)

If the matrix representative Hnm is transformed back to the discrete representation [38,
50] with the transformation T (equation (30) of [38]), that is,

Hij =
N∑
n=0

N∑
m=0

TinHnmTmj , (12)

one finds that

Hij =
N∑
k=0

DkiDkj +
[
V (yi)− Ṽ (yi)

]
δij , (13)
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where further details concerning the derivation of equation (13) are described in [50].
If the potential of interest can be factorized in accordance with equation (11), then
a possible choice of weight function would be given by the “equilibrium distribution
function” [50] or the ground state wave function. For this choice, the term in (V (yi)−
Ṽ (yi))δij is zero, since Ṽ (y) = V (y). The extension to two and three-dimensional
problems is straightforward [50] and involves the direct product of the one-dimensional
spaces.

For the class of potentials that can be written as given by equation (11), the
ground state wavefunction is known and given by

ψ0(y) = C exp

[
−1

2

∫
W (y) dy

]
, (14)

and the corresponding eigenvalue is zero. The function W (y) is referred to as the
superpotential [12,14]. These are the class of potentials that result in the transformation
of the Fokker–Planck equation into the Schrödinger equation [16,17,42,44,45]. In this
case, it is easy to choose the weight function such that Ṽ (y) = V (y).

3. Calculations and results

The main purpose of this paper is to consider the solution of the Schrödinger
equation with the QDM and to study the rate of the convergence of the eigenvalues
versus the number of grid points (equivalently, basis functions) for different weight

Figure 1. The Non-Polynomial Oscillator (NPO) potential, V (y) = y2 + λy2/(1 + gy2). λ and g equal
to (a) 10, 10, (b) 100, 100, and (c) 10, 100. The dash lines are the corresponding harmonic potential

V (y) = y2 + λ/g.
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Table 1
The convergence of eigenvaluesa with V (y) = y2 + λy2/(1 + gy2).

N λ1 λ2 λ3 λ4 λ5

λ = 0, g = 0

5 1.00000000 3.00000000 5.00000000 7.00000000 9.00000000

λ = 1, g = 1

10 1.23249101 3.51099389 5.62484751 7.83801690 10.32756366
15 1.23235091 3.50743657 5.59055567 7.65537404 9.72679150
20 1.23235080 3.50738872 5.58979112 7.64836479 9.68550819
25 1.23235072 3.50738837 5.58977905 7.64820406 9.68407574
30 1.23235072 3.50738835 5.58977894 7.64820127 9.68404264
35 3.50738835 5.58977893 7.64820124 9.68404202
40 5.58977893 7.64820124 9.68404202

λ = 10, g = 1

6 2.78731371 7.45133700 11.12235424 15.06719730 20.93409663
8 2.78330674 7.42328164 10.82111289 14.02801379 17.85478222

10 2.78256744 7.41859167 10.73364911 13.61840145 16.71237123
12 2.78239417 7.41766006 10.70974937 13.46807104 16.19788329
15 2.78231986 7.41756091 10.70207942 13.40273170 15.91402388
20 2.78233128 7.41750446 10.70106074 13.38898345 15.82571826
25 2.78233044 7.41750609 10.70102615 13.38834923 15.81924074
30 2.78233052 7.41750588 10.70102563 13.38832431 15.81888806
35 2.78233052 7.41750590 10.70102557 13.38832353 15.81887214
40 7.41750590 10.70102558 13.38832349 15.81887152
45 10.70102558 13.38832349 15.81887149
50 15.81887149

λ = 100, g = 1

10 9.35966852 26.70397902 41.44872496 53.83672948 64.45752724
15 9.35941391 26.70599835 41.44097043 53.83975078 64.19541577
20 9.35941813 26.70596477 41.44110330 53.83909110 64.18782502
25 9.35941803 26.70596566 41.44109963 53.83909383 64.18745791
30 9.35941803 26.70596563 41.44109976 53.83909326 64.18744198
35 26.70596563 41.44109975 53.83909327 64.18744105
40 41.44109975 53.83909326 64.18744100
45 53.83909326 64.18744100

a w(y) = exp(−αy2), where α is chosen for the fatest convergence.

functions. The basis functions, Rn(x), are orthonormal with respect to the weight func-
tion, w(x). Our interest is to try to suggest the weight function that provides optimal
convergence of the eigenvalues. We consider four different one-dimensional potentials
in the Schrödinger equation that have received considerable attention in the literature
over the past decade. If the convergence for one-dimensional problems can be opti-
mized, there would be a considerable savings in computer time when applied to two-
and three-dimensional problems. This has been demonstrated by Shizgal and Chen [50]
in the application of the QDM to the two-dimensional Henon–Heles potential.
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Table 2
The convergence of eigenvaluesa with V (y) = y2 + λy2/(1 + gy2).

N λ1 λ2 λ3 λ4 λ5

λ = 1, g = 10

10 1.11770702 3.54168906 6.69900727 11.03978681 16.69475171
30 1.05932983 3.08883073 5.09038673 7.13612019 9.26980877
50 1.05929698 3.08809133 5.08285715 7.09048160 9.08892124
60 1.05929690 3.08809085 5.08284796 7.09037430 9.08805809
70 1.05929689 3.08809085 5.08284769 7.09037053 9.08801960
80 1.05929688 5.08284768 7.09037041 9.08801815
90 1.05929688 5.08284768 7.09037041 9.08801810

100 9.08801810

λ = 10, g = 10

10 1.65877686 4.53929108 8.04585051 13.12551490 19.66357857
30 1.58013523 3.88195452 5.85711306 8.03082593 10.30455803
50 1.58002278 3.87904292 5.83286153 7.90413992 9.88876928
70 1.58002235 3.87903684 5.83276776 7.90315755 9.88233330
80 1.58002233 3.87903683 5.83276755 7.90315433 9.88230079
90 1.58002233 3.87903683 5.83276753 7.90315417 9.88229884

100 5.83276753 7.90315416 9.88229873
110 7.90315416 9.88229873

λ = 100, g = 10

10 5.82541635 12.16555870 15.97213490 22.13479362 29.83816388
30 5.79404439 11.57646135 13.66813086 16.22502482 18.70150089
50 5.79394465 11.57221790 13.62913696 15.99309324 17.99876164
70 5.79394241 11.57219684 13.62877371 15.98848089 17.97250413
90 5.79394231 11.57219677 13.62877143 15.98843454 17.97208972

100 5.79394230 11.57219678 13.62877142 15.98843423 17.97208598
110 5.79394230 11.57219678 13.62877142 15.98843421 17.97208565
120 15.98843421 17.97208562
130 17.97208562

a w(y) = exp(−αy2), where α is chosen for the fatest convergence.

The first potential that we have chosen and which has been studied exten-
sively [3,6,9,18,25,27,32–34,36,37,40,41,46,52,55,57,59] is the NPO model (equa-
tion (2)) shown in figure 1 as the solid curves. The dashed curves are the harmonic
potentials, V (y) = y2 + λ/g, for λ = g = 100 and λ = g = 10 (upper curve) and
for λ = 10 and g = 100 (lower curve); the potential departs from harmonic in the
vicinity of the origin. The deep narrow anharmonic well near the origin gets deeper
and narrower with increasing g. Many of the previous calculations have emphasized
the calculation of the ground state eigenvalue for large g. For situations where the
potential is close to harmonic, it would appear useful to use the scaled Hermite poly-
nomials as basis functions based on the weight function, w1(y) = exp(−αy2), where
α is a scaling parameter.
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Table 3
The convergence of eigenvaluesa with V (y) = y2 + λy2/(1 + gy2).

N λ1 λ2 λ3 λ4 λ5

λ = 1, g = 100

10 1.74034331 6.61289499 14.45434406 25.73416848 40.57425497
50 1.01083691 3.04192292 5.19309999 7.64468189 10.57282857

100 1.00841233 3.00987806 5.00989049 7.01481472 9.03654508
150 1.00841061 3.00983181 5.00927636 7.00985617 9.00959190
160 1.00841061 3.00983178 5.00927573 7.00984803 9.00951745
170 1.00841060 3.00983177 5.00927557 7.00984578 9.00949511
180 1.00841060 3.00983177 5.00927553 7.00984517 9.00948856

λ = 10, g = 100

10 2.12557689 8.03895659 17.66231586 31.55531547 49.82378424
50 1.09321568 3.19606870 5.54663516 8.42645412 11.98070336

100 1.08408954 3.09891916 5.09892856 7.13621223 9.24759634
150 1.08406343 3.09831922 5.09279892 7.09883559 9.09763231
160 1.08406338 3.09831770 5.09277453 7.09859179 9.09597926
170 1.08406335 3.09831722 5.09276616 7.09850083 9.09530236
180 1.08406335 3.09831706 5.09276332 7.09846755 9.09503285

λ = 100, g = 100

10 2.92175390 9.34160581 19.45189904 34.28680807 53.64778578
50 1.84742726 4.11049745 6.47955464 9.57139193 13.28590654

100 1.83638157 3.98422018 5.93857806 8.04492347 10.17201242
150 1.83633621 3.98310435 5.92841712 7.98535022 9.95499695
170 1.83633594 3.98309903 5.92834037 7.98458485 9.95023642
180 1.83633590 3.98309857 5.92833282 7.98449794 9.94960676

a w(y) = exp(−αy2), where α is chosen for the fatest convergence.

For this NPO potential, we have carried out an extensive analysis of the behavior
versus the two parameters g and λ and for different weight functions. The results are
summarized in tables 1–10. In tables 1–3 with g = 1, 10 and 100, we use the weight
function for scaled Hermite polynomials and vary the scaling parameter α for each of
the first 5 eigenvalues so as to get the value of α that yields the most rapid convergence.
The QDM is implemented, as discussed in the previous papers [38,50], by constructing
the orthogonal polynomials for the chosen weight function with the algorithm described
by Gautschi [29]. The quadrature points are then determined [10,13,28,43] and the
eigenvalues calculated from the numerical diagonalization of the QDM representative
of the Hamiltonian (equation (13)). The results are shown for λ = 1, 10 and 100 in
each table. In table 1, we reproduce exactly (to 9 significant figures) the harmonic
oscillator eigenvalues for λ = 0. With increasing g, it is seen that the eigenvalues
are getting increasingly equally spaced consistent with an harmonic potential. The
underlined portion of each eigenvalue indicates the convergence to that number of
significant figures. For g = 1, 10 and 100 in tables 1–3, we get convergence of
the eigenvalues with 25–45, 60–120, 170–180 quadrature points, respectively. The
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Table 4
The convergence of eigenvaluesa with V (y) = y2 + λy2/(1 + gy2).

N λ1 λ2 λ3 λ4 λ5

λ = 1, g = 1

10 1.23272180 3.50666367 5.59128149 7.64562064 9.69097632
20 1.23235720 3.50737573 5.58980527 7.64815336 9.68412556
30 1.23235100 3.50738781 5.58978006 7.64819920 9.68404558
40 1.23235074 3.50738831 5.58977901 7.64820110 9.68404226
50 1.23235073 3.50738835 5.58977894 7.64820123 9.68404204
60 1.23235072 3.50738835 5.58977893 7.64820124 9.68404202
70 1.23235072 5.58977893 7.64820124 9.68404202

λ = 10, g = 1

10 2.78258502 7.41837822 10.73118613 13.60393371 16.67001724
15 2.78231869 7.41755973 10.70193987 13.40125193 15.90594518
20 2.78233137 7.41750412 10.70105591 13.38888589 15.82484591
25 2.78233043 7.41750611 10.70102592 13.38834461 15.81917812
30 2.78233053 7.41750587 10.70102563 13.38832411 15.81888465
35 2.78233051 7.41750590 10.70102557 13.38832352 15.81887198
40 2.78233052 7.41750590 10.70102558 13.38832349 15.81887151
45 2.78233052 10.70102558 13.38832349 15.81887149
50 15.81887149

λ = 100, g = 1

10 9.35945915 26.70572641 41.44628014 53.91385775 64.86511926
15 9.35941761 26.70596964 41.44114465 53.84147035 64.23043100
20 9.35941803 26.70596558 41.44110119 53.83917850 64.19022920
25 9.35941803 26.70596563 41.44109978 53.83909702 64.18763807
30 26.70596563 41.44109975 53.83909346 64.18745616
35 41.44109975 53.83909328 64.18744228
40 53.83909327 64.18744111
45 53.83909326 64.18744101
50 53.83909326 64.18744100
55 64.18744100

a w(y) = exp(−y2
√

1 + λ/(1 + 0.5g) ).

convergence is clearly much slower for the large values of g. The results in table 3 for
the largest eigenvalues are converged to no less that 3 significant figures. The slow
convergence for large g is due to the narrow anharmonic form of the potential near
the origin; see figure 1.

For the results in table 1, the values of α were chosen arbitrarily. The interest in
this paper is to develop techniques to optimize the convergence by selecting a weight
function related in some way to the potential. Mitra [41] chose α =

√
1 + λ, and

Bessis and Bessis [6] suggested α =
√

1 + λ/(1 + 0.5g). In tables 4–6, we show the
results analogous to those in tables 1–3 using the value of α suggested by Bessis and
Bessis. It is clear that the convergence in tables 1–3 is faster than the convergence in
tables 4–6.
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Table 5
The convergence of eigenvaluesa with V (y) = y2 + λy2/(1 + gy2).

N λ1 λ2 λ3 λ4 λ5

λ = 1, g = 10

10 1.06515662 3.08692234 5.08700592 7.08838586 9.09234744
30 1.06003407 3.08794408 5.08337022 7.09012096 9.08856179
50 1.05946708 3.08805698 5.08296831 7.09031284 9.08814362

100 1.05930820 3.08808859 5.08285570 7.09036658 9.08802645
150 1.05929829 3.08809057 5.08284868 7.09036993 9.08801914
170 1.05929756 3.08809071 5.08284816 7.09037018 9.08801860
180 1.05929736 3.08809075 5.08284802 7.09037025 9.08801845

λ = 10, g = 10

10 1.61407526 3.87252286 5.85545056 7.90700483 9.98909626
30 1.58268033 3.87852707 5.83441119 7.90231956 9.88401555
50 1.58046212 3.87895272 5.83303946 7.90301643 9.88258285

100 1.58003812 3.87903382 5.83277730 7.90314922 9.88230893
150 1.58002355 3.87903660 5.83276829 7.90315378 9.88229952
170 1.58002282 3.87903674 5.83276784 7.90315400 9.88229905
180 1.58002265 3.87903677 5.83276773 7.90315406 9.88229894

λ = 100, g = 10

10 5.89164179 11.65464995 14.22630311 17.92322840 22.47689280
30 5.79569188 11.57183960 13.62953798 15.99205694 17.99649871
50 5.79404301 11.57217532 13.62879829 15.98841237 17.97213192

100 5.79394280 11.57219667 13.62877155 15.98843409 17.97208577
130 5.79394234 11.57219677 13.62877143 15.98843420 17.97208563
140 5.79394232 11.57219677 13.62877142 15.98843420 17.97208562
150 5.79394231 11.57219677 13.62877142 15.98843421 17.97208562
160 5.79394230 11.57219678 15.98843421
170 5.79394230 11.57219678

a w(y) = exp(−y2
√

1 + λ/(1 + 0.5g) ).

We have extended the previous efforts by employing a weight function chosen
empirically but taking into account the form of the potential. Our previous experi-
ence [50,51] has suggested that a useful choice of weight function would be derived
from the “superpotential” associated with the potential. This would require the solu-
tion of the Riccati equation [23] which is as difficult if not more so than the solution
of the Schrödinger equation. However, we have also shown that this choice of weight
function is not always the best choice [51]. Nevertheless, we have used an empirical
weight function of the form

w1(y) = exp
(
−α1y

2)/(1 + gy2)α2 . (15)

The results obtained with this weight function are shown in tables 7–9. In table 10,
we list the values of α1 and α2 in the weight function. For all pairs of λ and g, we
obtain convergence of the eigenvalues to 9–10 significant figures with no more than
60 quadrature points. It is useful to compare the convergence of λ5 for λ = 100 and
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Table 6
The convergence of eigenvaluesa with V (y) = y2 + λy2/(1 + gy2).

N λ1 λ2 λ3 λ4 λ5

λ = 1, g = 100

10 1.00943021 3.00981139 5.00980562 7.00981397 9.00989938
30 1.00902768 3.00981943 5.00959630 7.00982620 9.00973614
50 1.00883028 3.00982338 5.00949367 7.00983220 9.00965609

100 1.00860665 3.00982785 5.00937742 7.00983900 9.00956543
150 1.00851699 3.00982964 5.00933081 7.00984172 9.00952908
170 1.00849611 3.00983006 5.00931996 7.00984236 9.00952062
180 1.00848760 3.00983023 5.00931554 7.00984261 9.00951717

λ = 10, g = 100

10 1.09402833 3.09811836 5.09791649 7.09814755 9.09889054
30 1.08994543 3.09819977 5.09580087 7.09827100 9.09723424
50 1.08798805 3.09823881 5.09478843 7.09833030 9.09644473

100 1.08583151 3.09828179 5.09367433 7.09839559 9.09557603
150 1.08499665 3.09829842 5.09324340 7.09842085 9.09524005
170 1.08480631 3.09830221 5.09314518 7.09842660 9.09516348
180 1.08472929 3.09830374 5.09310544 7.09842893 9.09513250

λ = 100, g = 100

10 1.92323022 3.98167955 5.97436235 8.01099094 10.12548823
30 1.87989757 3.98225971 5.94937345 7.98317686 9.96554325
50 1.86200758 3.98260632 5.94066820 7.98370029 9.95876339

100 1.84549528 3.98292370 5.93271091 7.98417970 9.95257021
150 1.84038615 3.98302127 5.93026369 7.98432709 9.95066627
170 1.83936741 3.98304068 5.92977655 7.98435641 9.95028732
180 1.83897462 3.98304816 5.92958881 7.98436771 9.95014127

a w(y) = exp(−y2
√

1 + λ/(1 + 0.5g) ).

g = 100 in tables 9 and 3. In table 3, λ5 is converged to 9.950 with 180 quadrature
points, whereas it is converged to 9.94916096 with 50 points in table 9. This demon-
strates the usefulness of the QDM and the use of specific weight functions to accelerate
the convergence. This could mean a great decrease in computational times for two-
and three-dimensional problems.

In table 11, we compare the present results for λ1 with the results reported in
the literature by other workers. The methods used by others have been summarized
in the introduction to the paper. The weight function used is of the form given by
equation (15) with values of α1 and α2 which are chosen empirically for different
values of λ and g. The QDM results shown in this table are converged to the significant
figures shown – either 12 or 14. The most difficult parameter region is for g = 500 and,
as can be seen from the results in the table, we have achieved remarkable convergence
with g = 500. The only other work to compare with are the results by Bessis and
Bessis [6] and by Chaudhuri and Mukherjee [9]. The QDM results are far superior to
the previous results.
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Table 7
The convergence of eigenvaluesa with V (y) = y2 + λy2/(1 + gy2).

N λ1 λ2 λ3 λ4 λ5

λ = 1, g = 1

5 1.39754248 6.00256900 11.66691170 27.12138709 52.46889173
10 1.23347542 3.50334632 5.91911961 7.73245910 13.42453838
12 1.23235218 3.50738518 5.60432140 7.63808491 10.50025290
15 1.23235072 3.50738845 5.58977876 7.64821025 9.68403519
20 1.23235072 3.50738835 5.58977894 7.64820124 9.68404205
25 3.50738835 5.58977893 7.64820124 9.68404202
30 5.58977893 9.68404202
(b) 1.23235072 3.50738835 5.58977892 7.64820121 9.68404195
(c) 1.23235353 3.50739706 5.58983355 7.64906899

λ = 10, g = 1

5 2.78138892 8.72184392 14.67163572 29.92249451 55.15913549
10 2.78233156 7.41816173 10.81174060 13.48916964 18.62437460
12 2.78233088 7.41751699 10.70458231 13.40672751 16.36170232
15 2.78233052 7.41750593 10.70102881 13.38872711 15.82253275
20 2.78233052 7.41750590 10.70102558 13.38832349 15.81887215
25 7.41750590 10.70102558 13.38832349 15.81887149
30 15.81887149
(c) 2.78233054 7.41767206 10.70448059 13.39000325

λ = 100, g = 1

5 9.35957820 26.76092127 41.56662303 60.49260798 91.26562732
10 9.35941835 26.70595968 41.44117242 53.84491548 64.45670875
12 9.35941804 26.70596556 41.44110930 53.83926961 64.20476806
15 9.35941803 26.70596563 41.44109980 53.83909597 64.18766807
20 9.35941803 26.70596563 41.44109975 53.83909326 64.18744157
25 41.44109975 53.83909326 64.18744100
30 64.18744100
(c) 9.35941803 26.70596563 41.44109975 53.83909296

a w(y) = exp(−α1y
2)/(1 + gy2)α2 , where α1 and α2 are given in table 10. Results

from (b) Fack and Van den Berghe [18], (c) Lai and Lin [37].

Figure 2 shows the variation of the error in λ1 for the NPO model (g = λ = 10)
versus the number of quadrature points, N , for four different weight functions. λexact

1 is
defined as the eigenvalue converged to 14 significant figures calculated with the QDM.
The fourth weight function (d) gives the most rapid convergence. The significant im-
provement with weight function (d) over the scaled Gaussian weight function can be
explained with the variation of the eigenfunction shown in figures 3 and 4. The con-
vergence of the eigenvalue depends on the accurate determination of the eigenfunction
near the origin. Figures 3 and 4 show the details of the ground state eigenfunc-
tion near the origin. The solid curves are determined with the new weight function
(equation (15)) and N = 140. This is considered to be very close to the exact re-
sult. The other results are obtained with N = 25. Figure 3 is for g = λ = 100
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Table 8
The convergence of eigenvaluesa with V (y) = y2 + λy2/(1 + gy2).

N λ1 λ2 λ3 λ4 λ5

λ = 1, g = 10

8 1.09475078 3.28354065 6.07364598 10.01493041 33.92974057
10 1.06078000 3.10750137 5.34002953 7.84826441 12.39506550
12 1.05934121 3.08925905 5.10521689 7.20306392 9.76442476
15 1.05929700 3.08810693 5.08309896 7.09455928 9.11338782
20 1.05929690 3.08809085 5.08284789 7.09037308 9.08806709
25 1.05929688 3.08809085 5.08284767 7.09037041 9.08801812
30 1.05929688 5.08284768 7.09037041 9.08801810
35 5.08284768 9.08801810

λ = 10, g = 10

10 1.67530513 4.31996615 9.75230993 10.43741586 29.54884661
20 1.58002638 3.87916818 5.83491979 7.91869454 9.97591517
25 1.58002232 3.87903807 5.83278723 7.90346720 9.88457979
30 1.58002233 3.87903684 5.83276775 7.90315728 9.88233966
35 1.58002233 3.87903683 5.83276753 7.90315420 9.88229915
40 3.87903683 5.83276753 7.90315416 9.88229873
45 7.90315416 9.88229873
(b) 1.58002233 3.87903683 5.83276752 7.90315413 9.88229866

λ = 100, g = 10

10 7.48981433 8.03655640 44.09323078 49.71269815 149.70360371
20 5.79394731 11.57682425 13.70481854 16.27467472 19.37491150
25 5.79394193 11.57225713 13.62958358 16.00289112 18.03283044
30 5.79394232 11.57219704 13.62878139 15.98861076 17.97411182
35 5.79394230 11.57219678 13.62877147 15.98843650 17.97211015
40 5.79394230 11.57219678 13.62877142 15.98843422 17.97208593
45 13.62877142 15.98843421 17.97208562
50 15.98843421 17.97208562

a w(y) = exp(−α1y
2)/(1+gy2)α2 , where α1 and α2 are given in table 10. (b) Results

from Fack and Van den Berghe [18].

for three different weight functions: Hermite polynomials (∗), scaled Hermite poly-
nomials (+) and the new weight function (◦). Figure 3(B) shows the eigenfunction
on a small scale near the origin. From the figure we see that the points generated
from the scaled Gaussian weight function can not describe the rapid variation of the
eigenfunction near the origin. However, the new weight function, with a denser grid
of quadrature points near the origin where the potential (figure 1) and the eigenfunc-
tion vary rapidly, is better. It is clear that the results with the new weight function
(equation (15)) gives the best convergence. Figure 4 shows the behavior near the
origin for three different pairs of values of g and λ. Figure 4(B) shows the small scale
behavior near the origin, whereas figure 4(C) shows the small scale behavior at large
positions from the origin. The dashed curve is the result with the Gaussian weight
function.
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Table 9
The convergence of eigenvaluesa with V (y) = y2 + λy2/(1 + gy2).

N λ1 λ2 λ3 λ4 λ5

λ = 1, g = 100

10 1.04129101 3.29082677 6.43712676 10.95519923 55.86316463
15 1.00859774 3.01435281 5.04709144 7.22004103 9.67669200
20 1.00841165 3.00986701 5.00988241 7.01509885 9.04372955
25 1.00841060 3.00983203 5.00928092 7.00992522 9.01020204
30 1.00841060 3.00983177 5.00927556 7.00984573 9.00949652
35 3.00983177 5.00927551 7.00984496 9.00948602
40 5.00927551 7.00984495 9.00948596
45 7.00984495 9.00948596

λ = 10, g = 100

10 1.45426410 5.01654653 29.97472996 72.98922478 243.24844347
15 1.08980088 3.18022872 5.48420299 8.49756777 12.20388108
20 1.08416996 3.10035001 5.11504606 5.81559287 7.21912972
25 1.08406448 3.09836640 5.09342462 7.10472597 9.12859105
30 1.08406336 3.09831782 5.09277943 7.09864757 9.09661478
35 1.08406331 3.09831701 5.09276222 7.09845465 9.09492189
40 1.08406334 3.09831700 5.09276191 7.09844919 9.09486638
45 1.08406334 3.09831700 5.09276189 7.09844907 9.09486470
50 5.09276190 7.09844907 9.09486466
55 5.09276190 9.09486466

λ = 100, g = 100

10 0.25273328 58.55206092 526.35484897 565.24148666 1785.60704400
20 1.89936536 4.43121455 8.05177942 12.63918879 27.70284628
30 1.83635795 3.98374475 5.93607533 8.03086862 10.15714058
40 1.83633587 3.98309869 5.92833557 7.98453363 9.95000108
50 1.83633584 3.98309834 5.92832858 7.98444358 9.94916197
60 1.83633583 3.98309834 5.92832857 7.98444352 9.94916096
65 1.83633583 5.92832857 7.98444352 9.94916096
(b) 1.83633444 3.98309836 5.92832790 7.90315413 9.88229866

a w(y) = exp(−α1y
2)/(1 + gy2)α2 , where α1 and α2 are given in table 10. (b) Results

from Fack and Van den Berghe [18].

Table 10
(α1, α2) used for tables 7–9.

g/λ 1 10 100

1 (1, 10) (1.2, 10) (3, 12)
10 (1.4, 6) (2, 8) (2, 14)
10 (1.4, 6) (2, 8) (2, 14)

100 (2, 6) (2.4, 8) (2.5, 16)
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Table 11
Comparison of results of λ1 with V (y) = y2 + λy2/(1 + gy2).

λ 1 10 100 500

g = 1

QDM 1.232350723406 2.782330515932 9.359418026324 21.65874769959
(a) 1.23235072 2.78233052 9.35941803
(b) 1.23235072
(c) 1.24213
(d) 1.23235353 2.78233054 9.35941803
(e) 1.23237205 2.782330 9.35941803 21.6587477
(f) 1.23235 2.78233 9.3594

g = 10

QDM 1.059296880862 1.580022327392 5.793942300193 16.73274738223
(a) 1.05929688 1.58002233 5.79394230
(b) 1.58002233
(e) 1.05929700 1.5800249 5.793947 16.73919
(f) 1.05929 1.58002 5.794

g = 100

QDM 1.008410597947 1.084063335494 1.836335833449 5.083683913501
(a) 1.00841060 1.08406334 1.83633583
(b) 1.83633444
(c) 1.08411 1.8411
(e) 1.0084106 1.0840543 1.8363850 5.0840857
(f) 1.00841 1.08406 1.8364

g = 500

QDM 1.001849154630 1.084063335494 1.18486023962 1.92317625551
(a)
(c) 1.18451 1.92255
(e) 1.0018491 1.0184910 1.1848632 1.9232260

(a) Scherrer et al. [46], (b) Fack and Van den Berghe [18], (c) Chaudhuri and Mukher-
jee [9], (d) Lai and Lin [37], (e) Bessis and Bessis [6], (f) Mitra [41].

If the potential belongs to the class of potentials in supersymmetric quantum
mechanics [12,14], then the ground state eigenfunction is known with the eigenvalue
equal to zero. This is the case for the potential given by equation (3), considered by
Sinha et al. [53]. The weight function that corresponds to the superpotential is of the
form

w2(y) = exp
(
−y4/4

)
. (16)

The basis set was determined following the prescription by Gautschi [29] and the
quadrature points as described in the earlier papers. For this choice of weight function,
V (y) ≡ Ṽ (y), and the representative of the Hamiltonian in the QDM representation is
from equation (13) given by Hij =

∑
kDkiDkj . We have studied the convergence of

the eigenvalues for this potential with three different weight functions, one of which
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Figure 2. Variation of the error in λ1, ∆λ1 = |λ1 − λexact
1 |, for the NPO potential versus the num-

ber of grid points, N , for different weight functions. (a) w(y) = exp(−y2), (b) w(y) = exp(−y2×√
1 + λ/(1 + 0.5g) ), (c) w(y) = exp(−5.8y2), (d) w(y) = exp(−2y2)/(1 + gy2)8; λ = g = 10.

Figure 3. Ground state eigenfunction for the NPO potential with g = λ = 100, N = 25, with different
weight functions. (∗) w(y) = exp(−y2), (+) w(y) = exp(−17y2) and (◦) w(y) = exp(−3y2)/(1 + gy2)8.
The solid curve is for the last weight function with N = 140. (A) Full scale, (B) small scale near the

origin.
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Figure 4. Ground state of eigenfunction for the NPO potential. λ and g are equal to (a) 10, 10, (b) 100,
100, (c) 10, 100, and (- - -) 0, 0. (A) Full scale, (B) small scale near the origin, (C) small scale at large

positions from the origin.

corresponds to the Hermite polynomials, w1(y), defined earlier with α = 5, and another
given by

w3(y) = exp
(
−y4/4− 5y2). (17)

The results with the three weight functions are shown in table 12. The overall conver-
gence is very similar with all three weight functions, although w2(y) appears to give
marginally faster convergence, in particular for the first eigenvalue. Our results are
consistent with the results of Sinha et al. [53] to the precision that they report in their
paper.

The third potential chosen was studied by Braun et al. [8] and Kaluza [35] and also
belongs to the class of potentials in supersymmetric quantum mechanics. Kaluza chose
basis functions such that the matrix representative of the Hamiltonian is tridiagonal.
The generation of the basis set is essentially a Gram–Schmidt orthogonalization which
is subject to considerable round-off errors [11,47]. Kaluza avoids these numerical
difficulties by using symbolic algebraic techniques in Mathematica. For arbitrary
weight functions, this analytic approach is not feasible, whereas the Gautschi algorithm
is generally convergent. Braun et al. employ a spectral method of solution based on
Chebyshev polynomials on a finite interval where the cutoff at y = 8 is an additional
parameter. They use up to 512 grid points and report eigenvalues up to 18 significant
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Table 12
The convergence of eigenvalues for SE with V (y) = y6 − 3y2.

N λ1 λ3 λ5 λ10

w1(y) = exp(−5y2)

5 3.20578381 19.34421619
10 1.92166391 11.48428663 24.44773756
15 1.93541230 11.67877474 25.22960745 72.68872477
20 1.93548442 11.68098869 25.25435384 71.64137641
25 1.93548209 11.68097117 25.25461676 71.57368183
30 1.93548210 11.68097087 25.25460450 71.57923539
35 11.68097089 25.25460490 71.57902800
40 25.25460488 71.57903698
45 71.57903668
50 71.57903669

w2(y) = exp(−y4/4)

5 1.95003306 13.51720225
10 1.93549705 11.68815652 25.58769695
15 1.93548226 11.68108903 25.26571988 75.81549114
20 1.93548210 11.68097109 25.25463882 72.04071624
25 11.68097089 25.25460546 71.58445530
30 25.25460488 71.57920993
35 71.57903737
40 71.57903670
45 71.57903669

w3(y) = exp(−y4/4− 5y2)

5 4.54466778 23.73100470
10 2.23089971 13.39054786 31.59035642
15 1.94701006 11.78606709 25.89623300 83.65936104
20 1.93570651 11.68371077 25.28051990 73.07062002
25 1.93548392 11.68099725 25.25493023 71.64923337
30 1.93548212 11.68097108 25.25460771 71.57992969
35 1.93548210 11.68097089 25.25460489 71.57904422
40 11.68097089 25.25460488 71.57903671
45 71.57903669

figures. We have chosen the weight function

w4(y) = exp
(
−2y2 − y4/2

)
(18)

and determined the matrix representative of the Hamiltonian in the “polynomial ba-
sis” representation (equation (10)) with Vnm − Ṽnm = 2. The matrix elements of the
Hamiltonian are determined with the quadrature define by the weight function (equa-
tion (18)). Because of the symmetry of the potential, the eigenfunctions are of either
even or odd parity. The matrix Hnm of dimension N × N can be decomposed into
two matrices for the odd and even eigenfunctions each of dimension (N/2) × (N/2).
Since the matrix Hnm is pentadiagonal, the submatrices of even and odd parity are
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Table 13
The convergence of eigenvaluesa of even parity with V (y) = (1/2)y2 + 2y4 + (1/2)y6.

N λ1 λ3 λ5 λ7

1 1.00000000000000000
3 1.00000000000000000 15.832389169799
5 15.124216267224 40.6232236023546
8 15.118931530866 36.367167641896 66.261603950851

10 15.118929992544 36.343021051640 62.648395926012
15 15.118929986242 36.342716214160 62.356049424923
20 15.118929986242 36.342716212413 62.356028944861
25 36.342716212413 62.356028944603
30 62.356028944604
35 62.356028944604

N λ20 λ30 λ40 λ48

20 438.4415064273
30 310.4920471524 848.8060217068
40 309.4993497820 588.5806628599 1346.579274312
50 309.4993484837 566.4282265701 947.4614543288 1597.421054106
55 309.4993484837 566.4026817440 893.9968790569 1364.247596709
60 566.4026355012 872.0907745529 1248.445773964
65 566.4026354734 868.2562193165 1183.544197185
70 566.4026354734 868.1457422322 1149.943901457
75 868.1452015357 1138.668487703
80 868.1452006773 1137.541785229
85 868.1452006767 1137.522672203
90 868.1452006767 1137.522588690
95 1137.522588541

100 1137.522588541

a W (y) = exp(−2y2 − y4/2).

tridiagonal. The convergence of the eigenvalues from the numerical diagonalization
of these tridiagonal matrices is rapid.

The final potential studied is given by equation (5). This potential is not in the
class of potentials in supersymmetric quantum mechanics. We have in the first instance
used scaled Hermite polynomials and the associated quadrature points to determine the
eigenvalues with equation (13). The convergence of the lower order eigenvalues is
shown in table 14 for three values of ε. The scaling is very important in order
that the grid points are distributed over the region of y where the eigenfunctions
are concentrated. With the notion that the optimal weight function should be the
square of the ground state eigenfunction, we have fitted, to polynomials, the ground
state eigenfunction determined previously with Hermite quadrature points. This is
an alternative to solving the Riccati equation for the superpotential [22]. The fit is
reasonably accurate, but V (y) is not exactly equal to Ṽ (y). In table 15, we show the
convergence of the eigenvalues with this alternate weight function. The results with
this weight function show a moderate improvement in the rate of convergence. We
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Table 14
The convergence of eigenvalues with V (y) = y2 + εy4.

N λ1 λ3 λ5 λ10

ε = 10a

12 2.44917485 16.63595545 35.88068953 94.30085478
15 2.44917408 16.63591955 35.88506209 95.81165911
20 2.44917407 16.63592150 35.88517148 96.15949348
25 2.44917407 16.63592149 35.88517122 96.15623411
30 16.63592149 35.88517122 96.15626312
35 96.15626298
40 96.15626298

ε = 100b

10 4.99945382 34.87447875 75.72914876 253.32604009
12 4.99941563 34.87402295 75.88739267 201.40793502
15 4.99941758 34.87398862 75.87689375 205.27637088
20 4.99941755 34.87398427 75.87700463 204.79428957
25 4.99941755 34.87398426 75.87700403 204.79476335
30 34.87398426 75.87700403 204.79477459
35 204.79477451
40 204.79477451

ε = 10000c

10 22.86146298 160.68335404 350.84170426 1022.19210882
12 22.86161867 160.68601691 350.38352262 924.84691394
15 22.86160889 160.68588347 350.43503532 944.02953926
20 22.86160887 160.68591272 350.43589703 947.71986787
25 22.86160887 160.68591261 350.43589621 947.68562278
30 160.68591261 350.43589622 947.68596392
35 350.43589622 947.68596166
40 947.68596167
45 947.68596167

a w(y) = exp(−6y2).
b w(y) = exp(−10y2).
c w(y) = exp(−60y2).

find, for example, that with the new weight function for ε = 100, λ1 is converged to 9
significant figures with 15 points, whereas 20 points are required with scaled Hermite
polynomials. Similarly, λ3 is converged to 8 significant figures with 20 points, whereas
25 are required with scaled Hermite polynomials. The choice of weight function is
clearly important for the rapid convergence of the eigenvalues.

4. Summary

In the present paper, we have provided an extensive study of the use of the
Quadrature Discretization Method (QDM) in the solution of the Schrödinger equation
for several one-dimensional potential functions considered recently by several other
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Table 15
The convergence of eigenvalues with V (y) = y2 + εy4 calculated by fitting weight

function to ground state eigenfunction.

N λ1 λ3 λ5 λ10

ε = 10a

10 2.44917318 16.63603391 35.86694240 107.31938413
12 2.44917406 16.63593038 35.88380588 98.84824260
15 2.44917407 16.63592170 35.88516632 96.71828902
20 16.63592149 35.88517122 96.16096863
25 16.63592149 35.88517122 96.15625913
30 96.15626298
35 96.15626298

ε = 100b

12 4.99941762 34.87397375 75.87733275 210.04422203
15 4.99941755 34.87398436 75.87701004 205.20313119
20 4.99941755 34.87398426 75.87700401 204.79819433
25 34.87398426 75.87700403 204.79477654
30 75.87700403 204.79477452
35 204.79477451
40 204.79477451

ε = 10000c

10 22.86160088 160.68728162 350.26068143 1055.94778633
12 22.86160897 160.68596913 350.42650209 973.50076873
15 22.86160887 160.68591446 350.43583997 952.12677503
20 22.86160887 160.68591261 350.43589612 947.72238259
25 160.68591261 350.43589622 947.68593841
30 350.43589622 947.68596166
35 947.68596167
40 947.68596167

a w(y) = exp(−(y4 + 5y2)/2).
b w(y) = exp(−(2y4 + 6y2)).
c w(y) = exp(−(50y4 + 25y2)).

researchers. The main theme of this paper is to determine the optimum set of basis
functions, equivalently the weight function, that provides rapid convergence of the
eigenvalues versus the number of basis functions or grid points. Although this work
is restricted to one-dimensional problems, the extension to two- and three-dimensions
is straightforward [50]. The eigenvalues can be determined by the numerical diag-
onalization of the representative of the Hamiltonian in either the polynomial or the
discrete basis. The work in this paper generally employed the discretized version of
the Hamiltonian at a set of points that correspond to the quadrature points associ-
ated with the chosen weight function. The distribution of grid points is determined
by the weight function, which controls the convergence of the eigenvalues and eigen-
functions. We have demonstrated in this paper the flexibility of the QDM in that
arbitrary weight functions can be employed to improve the rate of convergence. In
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some cases, the improvement is remarkable such as for the nonpolynomial oscilla-
tor.
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